Security Decision Making in Interdependent Organizations

Presented by R. Ann Miura-Ko

Joint work with Benjamin Yolken, John Mitchell and Nicholas Bambos

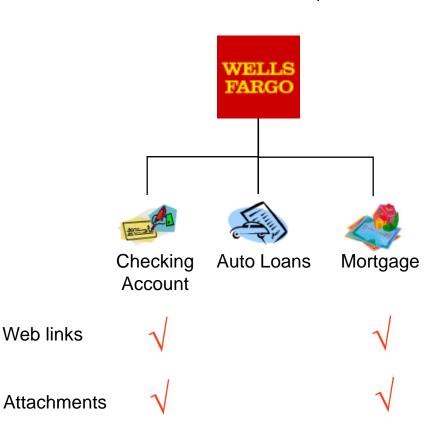
Risk Management

- Security: not a technology issue alone
- Budgets and resources are limited
- Human error can lead to risk

- Should I invest in more user authentication?
 Which kind is most effective?
- Do I worry more about a high probability, low loss event or a low probability, high loss event?

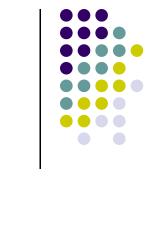
Risk Management

- Why is risk management of security hard?
 - Measurement is difficult
 - User incentives generally not aligned
- Security as an optimization problem
 - Dynamic resource allocation under constraints
 - Game played against an adversary


Model Fundamentals

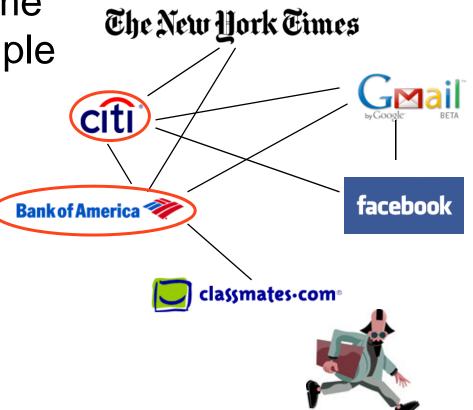
- Companies make investments in security
- Your security depends on:
 - Own investments
 - Neighbors' investments
- Neighbors:
 - Relationship ties their security to yours
- Relationship:
 - Beneficial
 - Harmful

Customer Education Effort


- Customers receive email communications from multiple departments at a bank
- Each product group constructs own email policy
- Inconsistent messaging ⇒ shared risk

Anti-Spam

- Investment in email path verification
 - Sender ID
 - Sender Policy Framework
- Two types of companies:
 - Email service provider
 - Business / organization
- Email path verification can benefit or damage anti-spam efforts of neighbors
- Will everyone implement?

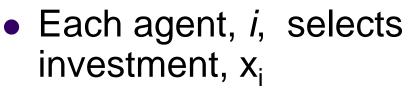

Web Authentication

- Same / similar username and password for multiple sites
- Security not equally important to all sites

Shared risk for all

Motivation

- Many situations where this type of model makes sense
 - Peer-to-peer networks and security
 - Social networks and privacy
 - Health information sharing between hospitals
- Interactions can be beneficial as well as detrimental


- How much free riding occurs?
 - Who invests and how much?

Network Model

facebook	The New York Times	•	No age Lin We	rk = des = ents ks = eights	= De influe s = de	cisio ence	n m / in e of	nakin Iterao	g ction	¢
	.2 flickr <i>W</i> =	$1 \\1 \\ .2 \\ 0 \\ .2 \\ .2 \\ 0 \\ .2 \\ .2 \\ .2$	1 1 0 0 0 0 0 0 0 0	$.1\\0\\1\\1\\0\\1\\0\\1\\0$	$egin{array}{c} 0 \\ 0 \\1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$.1\\0\\1\\0\\1\\0\\0\\0\\0\\0\\0$	$egin{array}{c} .1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$.1\\0\\1\\0\\0\\0\\1\\0$	$ \begin{bmatrix} .1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} $

Incentive Model

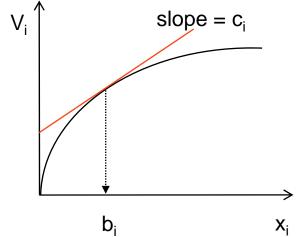
Security of *i* determined by total effective investment:

 $(\mathbf{W}\mathbf{x})_i = \sum_{j=1}^N w_{ij} x_j$

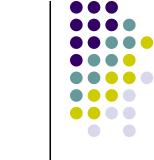
- Benefit received by agent i: $V_i(\mathbf{Wx})_i$
- Cost of investment: $c_i x_i$
- Net benefit:

$$U_i(\mathbf{x}) = V_i((\mathbf{W}\mathbf{x})_i) - c_i x_i$$

≥cîtî 9 $\widetilde{V}_i(\mathbf{W}\mathbf{x})_i = \overline{c_i} \stackrel{\mathcal{A}}{=} \underset{\mathcal{L}_6}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \underset{\mathcal{L}_8}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}}{=} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\to} \overset{\mathcal{A}}{=} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{=}} \overset$ $U_{i}(\mathbf{x}) = \begin{array}{c} \beta_{i} = 1\\ \beta_{i} \log((\mathbf{W}\mathbf{x})_{i}) - x_{i}\\ \beta_{citi} = \beta_{BofA} = 10 \end{array}$


How will agents react?

• All agents maximize their utility function:


$$U_i(\mathbf{x}) = V_i((\mathbf{W}\mathbf{x})_i) - c_i x_i$$
$$U'_i(\mathbf{x}) = 0 \Rightarrow V'_i(\bullet) = c_i$$

- b_i is where the marginal cost = marginal benefit for agent i
- If neighbor's contribution > b_i, x_i=0
- If neighbor's contribution <
 b_i, x_i = difference

How will agents react?

• All agents maximize their utility function:

 $U_i(\mathbf{x}) = \beta_i log((\mathbf{W}\mathbf{x})_i) - x_i$

 b_i is where the marginal cost = marginal benefit for agent i

$$\beta_i \frac{1}{b_i} - 1 = 0 \Rightarrow b_i = \beta_i$$

Each node seeks a level of b_i effective investment

$$b = \begin{bmatrix} 10 \ 10 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}$$

What is an equilibrium?

- Nash Equilibrium
 - Stable point (vector of investments) at which no agent has incentive to change their current strategy

$$U_i(x_i, x_{-i}) \ge U_i(x'_i, x_{-i}) \forall i, x_i \in [0, \infty)$$

• This happens when:

$$(\mathbf{W}\mathbf{x})_i = b_i \text{ if } x_i > 0$$
$$(\mathbf{W}\mathbf{x})_i \ge b_i \text{ if } x_i = 0$$

• Leverage Linear Complementarity literature

Analysis of the Model

• Diagonal Dominance:

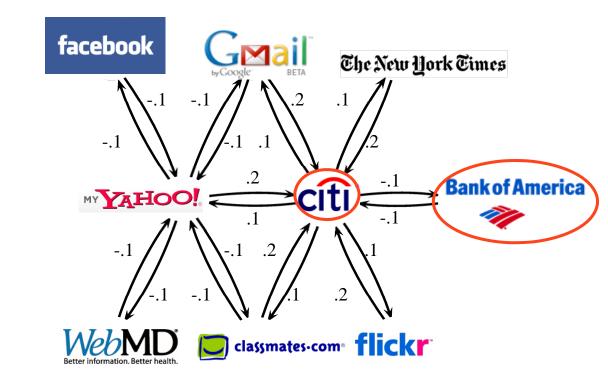
$$\sum_{j \neq i} |w_{ij}| \le |w_{ii}| = 1 \forall i$$

- Existence and uniqueness of Nash Equilibrium
- Convergence to the Nash Equilibrium in a distributed, asynchronous manner

Free Riding

- Since others are contributing to an agent's investment, some may choose not to invest at all
- Measure of contribution relative to what they need, *free riding index:*

$$\gamma_i = \frac{(\mathbf{W}\mathbf{x})_i - x_i}{b_i}$$


Web Authentication

• Utility function:

$$U_i(\mathbf{x}) = \beta_i log(\mathbf{W}\mathbf{x}) - x_i$$

Firm	x_i	γ_i
1	11.09	-0.11
2	11.11	-0.11
3	0.09	0.91
4	1.01	-0.01
5	0	1.10
6	0	1.11
7	1.01	-0.01
8	0	1.10
9	0	1.11

- Application of risk management modeling to real scenarios in security
- Future direction:
 - Optimization to improve equilibria
 - Possible relaxations of diagonal dominance restriction